縲千函謌植I縲羨mazon Q縺後Μ繝ェ繝シ繧ケ縲甚e:Invent 2023縲

AWS re:Invent 2023縺ァ蠕縺。縺ォ蠕縺」縺滓ゥ溯ス縺後Μ繝ェ繝シ繧ケ縺輔l縺セ縺励◆シ

chat GPT 縺ョ繧医≧縺ォ雉ェ蝠上r縺吶k縺ィAI縺悟屓遲斐r蜃コ縺励※縺上l縺セ縺吶ゆサ悶↓繧AWS縺ョ讒倥縺ェ繧オ繝シ繝薙せ縺ォ謳ュ霈峨&繧後◆繧翫√お繝ウ繧ソ繝シ繝励Λ繧、繧コ逕ィ騾斐↓繧ょ茜逕ィ縺ァ縺阪∪縺吶

縺縺セ縺セ縺ァAWS迺ー蠅讒狗ッ峨〒隧ー縺セ縺」縺溘j繧ィ繝ゥ繝シ縺瑚ァ」豸医〒縺阪↑縺縺薙→縺悟アア縺サ縺ゥ縺ゅj縺セ縺励◆縺後√%縺ョAmazon Q繧剃スソ縺縺ィ菴呵ィ医↑譎る俣縺悟、ァ蟷蜑頑ク帙〒縺阪k縺九b縺励l縺セ縺帙s縲

縲窟mazon Q縺ィ縺励※縺ョ繧オ繝シ繝薙せ縲阪ョ莉悶↓繧り牡縲縺ェ縺ィ縺薙m縺ォ逋サ蝣エ縺励※縺翫j逅隗」縺碁屮縺励>驛ィ蛻縺後≠繧翫∪縺吶ョ縺ァ縲、mazon Q縺ォ縺、縺縺ヲ謨エ逅縺縺溘@縺セ縺励◆縲

Amazon Q縺ィ縺ッ

Amazon Q 縺ッ逕滓植I繧呈エサ逕ィ縺励◆蟇セ隧ア蝙九ョ繧「繧キ繧ケ繧ソ繝ウ繝医〒縲、WS繧「繝励Μ繧ア繝シ繧キ繝ァ繝ウ縺ョ逅隗」繧呈キア繧√◆繧翫☆繧九□縺代〒縺ッ縺ェ縺上髢狗匱繧險ュ螳壹↑縺ゥ縺ョ謾ッ謠エ繧ゅ@縺ヲ縺上l縺セ縺吶

蜿り縺ォ縺励※縺繧九ョ繝シ繧ソ縺ッAWS縺ョ繝吶せ繝医励Λ繧ッ繝繧」繧ケ繧蜈ャ蠑上ョ繝峨く繝・繝。繝ウ繝医〒縺吶ョ縺ァ縲∫イセ蠎ヲ縺ョ鬮倥>隗」遲斐′蠕励i繧後∪縺吶

縺セ縺溘!DE 縺ァ菴ソ逕ィ縺吶k縺ィ繧ウ繝シ繝峨ョ隱ャ譏弱√さ繝シ繝臥函謌舌√ョ繝舌ャ繧ー繧譛驕ゥ蛹悶↑縺ゥ縺ョ繧ス繝輔ヨ繧ヲ繧ァ繧「髢狗匱謾ッ謠エ繧ゅ@縺ヲ縺上l縺セ縺吶

Amazon Q 縺ョ譁咎

繝励Λ繝ウ縺ッ繝薙ず繝阪せ蜷代¢縺ョ縲窟mazon Q Business縲阪→縲髢狗匱閠蜷代¢縺ョ縲窟mazon Q Builder縲阪′逕ィ諢上&繧後※縺縺セ縺吶

繝励Λ繝ウ雋サ逕ィ
Amazon Q Business1繧「繧ォ繧ヲ繝ウ繝医↓縺、縺$20/譛
Amazon Q Builder1繧「繧ォ繧ヲ繝ウ繝医↓縺、縺$25/譛

2023蟷エ12譛育樟蝨ィ縺ッ繝励Ξ繝薙Η繝シ迚医→縺励※辟。譁吝ャ髢九&繧後※縺縺セ縺吶ゆサ翫ョ縺縺。縺ォ濶イ縲縺ィ蜃コ譚・繧倶コ九r讀懆ィシ縺励※縺ソ縺セ縺励g縺縲

Amazon Q 縺ッAWS縺ョ讒倥縺ェ繧オ繝シ繝薙せ縺ァ逋サ蝣エ縺励∪縺吶

縺セ縺溘√し繝シ繝薙せ縺ォ繧医▲縺ヲ縺ッ蛻・騾碑イサ逕ィ縺梧寺縺九k繧ゅョ繧ゅ≠繧九h縺縺ァ縺吶よ悽險倅コ句濤遲閾ェ莨昴〒縺ッCodeCatalyst 縺ィ縺ョ騾」謳コ縺ッ雋サ逕ィ縺梧寺縺九k繧医≧縺ァ縺吶

迴セ蝨ィ逋コ陦ィ縺輔l縺ヲ縺繧矩未騾」繧オ繝シ繝薙せ縺ョ荳驛ィ繧堤エケ莉九>縺溘@縺セ縺吶

  • 繝槭ロ繧ク繝。繝ウ繝医さ繝ウ繧ス繝シ繝ォ縺ァ莨夊ゥア蝙飢A縺悟庄閭ス(ChatGPT縺ョ繧医≧縺ェ讖溯ス)
  • 繧ィ繝ゥ繝シ逋コ逕滓凾縺ョ繝医Λ繝悶Ν繧キ繝・繝シ繝繧」繝ウ繧ー
  • Amazon Q Code Transform縺ァJava 8縺九iJava 17縺ォ繧ウ繝シ繝峨r螟画鋤
  • Amazon Q generative SQL in Amazon Redshift
  • Amazon CodeCatalyst縺ィ騾」謳コ縺励、mazon Q縺ォ繧ソ繧ケ繧ッ繧偵い繧オ繧、繝ウ
  • Amazon Q Data integration in AWS Glue
  • Amazon Q縺ォ繧医kEC2繧、繝ウ繧ケ繧ソ繝ウ繧ケ驕ク螳壽髪謠エ
  • AWS Chatbot縺窟mazon Q conversation繧偵し繝昴シ繝
  • Amazon Q in the AWS Console Mobile Application

縺昴l縺ァ縺ッ縺薙ョ荳ュ縺九i縺縺上▽縺九ヴ繝繧ッ繧「繝繝励@縺ヲ讀懆ィシ縺励※縺ソ縺溘b縺ョ繧偵#邏ケ莉

繝槭ロ繧ク繝。繝ウ繝医さ繝ウ繧ス繝シ繝ォ縺ァ縺ョAmazon Q

繝槭ロ繧ク繝。繝ウ繝医さ繝ウ繧ス繝シ繝ォ縺ョ蟾ヲ蛛エ縺ォ縲群縲阪ョ繧ソ繝悶′霑ス蜉縺輔l縺ヲ縺縺セ縺吶

譌ゥ騾溯ァヲ縺」縺ヲ縺ソ縺セ縺励g縺縲

Amazon Q 縺ョ繝槭ロ繧ク繝。繝ウ繝医さ繝ウ繧ス繝シ繝ォ縺九i縺ョ蛻ゥ逕ィ譁ケ豕

繧ッ繝ェ繝繧ッ縺吶k縺ィ荳玖ィ倥ョ逕サ髱「縺瑚。ィ遉コ縺輔l縺セ縺吶ChatGPT縺ョ繧医≧縺ェ逕サ髱「縺ァ縺吶ュ縲

Amazon Q 縺ク縺ョ雉ェ蝠丞螳ケ繧オ繝ウ繝励Ν繧よ署遉コ縺輔l縺ヲ縺縺セ縺吶

Amazon Q 縺ョ雉ェ蝠冗判髱「

莉雁屓縺ッ縲∽サ・蜑榊ス薙ヶ繝ュ繧ー縺ァ繧らエケ莉九@縺溘慶odepipeline縺ィgitlab繧帝」謳コ縺励◆CI/CD迺ー蠅讒狗ッ峨阪↓縺、縺縺ヲ雉ェ蝠上@縺ヲ縺ソ縺セ縺励◆縲

how to build CICD pipeline from gitlab

Amazon Q 縺ッ迴セ蝨ィ譌・譛ャ隱槫ッセ蠢懊ッ縺輔l縺ヲ縺縺セ縺帙s縲ゅ◆縺縲∽ク願ィ倥ョ繧医≧縺ェ縺、縺溘↑縺闍ア隱槭〒繧ゅ@縺」縺九j蝗樒ュ斐@縺ヲ縺上l縺セ縺吶

Amazon Q 縺ョ蝗樒ュ斐ッ荳玖ィ倥ョ騾壹j縺ァ縺励◆縲ゅ槭ル繝・繧「繝ォ縺ェ縺ゥ繧呈爾縺励↓縺縺九★縺ィ繧ゅ√∪縺ィ繧√※謇矩繧堤、コ縺励※縺上l繧九ョ縺ァ縺ィ縺ヲ繧ゆセソ蛻ゥ縺ァ縺呻シ

Here are the steps to build a CICD pipeline from GitLab to deploy to EC2/Lightsail instances:

  1. Create a GitLab project and commit code changes to a branch (e.g. master)
  2. Setup a GitLab CI/CD pipeline that builds and tests the code
  3. Connect the GitLab project to AWS CodePipeline via the GitLab connector
  4. Create CodePipeline stages for building, testing and deploying
  5. For the build stage, use CodeBuild to build the code
  6. For the test stage, use CodeBuild or EC2 instances to run tests
  7. For the production stage:
  • Use CodeDeploy to deploy builds to an EC2/Lightsail instance for the production environment
  • Optionally create separate CodeDeploy deployment groups for testing and production environments to deploy different branches to different instances
  1. CodePipeline will automatically trigger on GitLab pushes/merges to the branch and run the pipeline to build, test and deploy changes.

This allows maintaining a GitLab-based CICD workflow while deploying the application to AWS production infrastructure using services like CodeBuild and CodeDeploy.

Sources

[1] How to deploy workloads in a multicloud environment with AWS developer tools 

[2] Setting Up OpenID Connect with GitLab CI/CD to Provide Secure Access to Environments in AWS Accounts 

[3] CICD Production and testing enviroments to lightsail or EC2 instance 

諠蝣ア縺ョ蜿門セ怜繧よ署遉コ縺輔l縺ヲ縺縺セ縺吶

AWS縺ョ蜈ャ蠑上ヶ繝ュ繧ー縺縺代〒縺ェ縺俊epost繧ょ盾閠縺ォ縺励※縺繧九%縺ィ縺後o縺九j縺セ縺吶

繧ィ繝ゥ繝シ逋コ逕滓凾縺ョ繝医Λ繝悶Ν繧キ繝・繝シ繝繧」繝ウ繧ー

2023蟷エ12譛2譌・迴セ蝨ィ縺ッ繧ェ繝ャ繧エ繝ウ繝ェ繝シ繧ク繝ァ繝ウ縺ョ縺ソ縺ョ繧オ繝シ繝薙せ縺ィ縺ェ縺」縺ヲ縺縺セ縺吶

AWS縺ョ繝槭ロ繧ク繝。繝ウ繝医さ繝ウ繧ス繝シ繝ォ荳翫〒繧ィ繝ゥ繝シ縺瑚。ィ遉コ縺輔l縺滄圀縺ォ縲√◎縺ョ縺セ縺セAmazon Q 縺後ヨ繝ゥ繝悶Ν繧キ繝・繝シ繝繧」繝ウ繧ー縺ョ繧オ繝昴シ繝医r縺励※縺上l繧区ゥ溯ス縺ァ縺吶

荳玖ィ倥ョ繧オ繝ウ繝励Ν縺ァ縺ッEC2繧、繝ウ繧ケ繧ソ繝ウ繧ケ縺ァ邨ゆコ菫晁ュキ繧定ィュ螳壹@縺溘う繝ウ繧ケ繧ソ繝ウ繧ケ縺ォ蟇セ縺励※縲∫オゆコ繧ウ繝槭Φ繝峨r螳溯。後@繧医≧縺ィ縺励◆髫帙ョ繧ィ繝ゥ繝シ繝。繝繧サ繝シ繧ク縺ァ縺吶

Amazon Q 縺ョTroubleshoot逕サ髱「陦ィ遉コ

髱呈棧縺ァ蝗イ縺」縺滄Κ蛻縺ォ豕ィ逶ョ縺ァ縺吶

縲卦roubleshoot with Amazon Q縲阪→縺縺繝懊ち繝ウ縺瑚ソス蜉縺輔l縺ヲ縺縺セ縺吶

縺薙ョ繝懊ち繝ウ繧呈款荳九☆繧九%縺ィ縺ァAmazon Q 縺後お繝ゥ繝シ蜀螳ケ繧定ァ」譫舌@縲∬ァ」豎コ譁ケ豕輔r謠千、コ縺励※縺上l縺セ縺吶

繝懊ち繝ウ謚シ荳九☆繧九→荳玖ィ倥ョ逕サ髱「縺ォ縺ェ繧翫∪縺吶

Amazon Q 縺ョTroubleshoot逕サ髱「縺ァ陦ィ遉コ縺輔l繧九お繝ゥ繝シ隗」譫

隗」譫千オ先棡縺ィ縺励※縲∫オゆコ菫晁ュキ縺ョ險ュ螳壹′險蜿翫&繧後※縺縺セ縺吶よΦ螳壹@縺ヲ縺滄壹j縺ョ蜀螳ケ縺ァ縺吶

隗」豎コ譁ケ豕輔r謠千、コ縺励※谺イ縺励>蝣エ蜷医ッ縲粂elp me resolve縲阪r謚シ荳九@縺セ縺吶ゅ◎縺ョ縺セ繧薙∪縲瑚ァ」豎コ譁ケ豕輔r謨吶∴縺ヲ縲阪→縺縺諢丞袖縺ァ縺吶ュ縲

Amazon Q 縺ョTroubleshoot逕サ髱「縺ァ陦ィ遉コ縺輔l繧九お繝ゥ繝シ隗」豎コ譁ケ豕輔ョ謠千、コ

隗」豎コ譁ケ豕輔→縺励※縲檎オゆコ菫晁ュキ縲阪ョ險ュ螳壹rDisable縺ォ縺吶k繧医≧縺ォ縺ィ謠千、コ縺輔l縺ヲ縺縺セ縺吶

莉雁屓縺ッ縺ィ縺ヲ繧らー。蜊倥↑繧ィ繝ゥ繝シ蜀螳ケ縺ョ隗」豎コ譁ケ豕墓署遉コ繧偵し繝昴シ繝医@縺ヲ繧ゅ≠繧翫∪縺励◆縺後∝ョ滄圀縺ョ髢狗匱迴セ蝣エ縺ァ驕ュ驕縺吶k繧ゅ▲縺ィ隍髮代↑繧ィ繝ゥ繝シ縺ォ繧ょッセ蠢懊〒縺阪k縺ョ縺ァ縺ッ縺ェ縺縺ァ縺励g縺縺具シ磯。俶悍シ

縺セ縺ィ繧

2023蟷エ縺ョAWS re:Invent縺ァ譛繧よウィ逶ョ縺輔l縺蘗mazon Q 縺ョ縺皮エケ莉九〒縺励◆縲

豬∬。後j縺ョ逕滓植I縺ァ縺吶′AWS縺ァ縺ョ髢狗匱迴セ蝣エ縺ァ縺ョ縺昴ョ繝。繝ェ繝繝医r莠ォ蜿励☆繧九%縺ィ縺後〒縺阪k繧医≧縺ォ縺ェ繧翫∪縺励◆縺ュ縲Amazon Q 繧剃スソ縺縺薙↑縺吶%縺ィ縺ァ縲、WS縺ァ縺ョ髢狗匱繧ケ繝斐シ繝峨′辷荳翫′繧翫@縺ヲ縺縺阪◎縺縺ァ縺吶

AI縺ォ莉穂コ九r螂ェ繧上l縺ェ縺繧医≧縺ォ縲窟I繧剃スソ縺縺薙↑縺吶お繝ウ繧ク繝九い縲阪→縺励※縺ョ繧ケ繧ュ繝ォ繧りコォ縺ォ縺、縺代※縺縺阪◆縺縺ァ縺吶ュ縲

繧ウ繝。繝ウ繝医r谿九☆